
[Usha, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3379-3384]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Frequent Pattern Mining Algorithm for Crime Dataset: An Analysis
D.Usha*1, K.Rameshkumar2

*1Assistant Professor, 2Associate Professor, Hindustan University, Chennai, India
dusha@hindustanuniv.ac.in

Abstract
 The mining of frequent item set from uncertain data is the great task and it consumes more time. One of
the frequent pattern mining algorithm called Apriori algorithm can be used to mine the data from bulk of uncertain
dataset. But it can give only minimum support constraint in mining the large amount of uncertain dataset. The
experimental behavior of different types of algorithms is very different in the uncertain case as compared to the
deterministic case. In particular when compare to Apriori algorithm and other Apriori based algorithm, each and
every algorithm has their own advantages when compare to other algorithm. Some algorithm shows robustness with
respect of both efficiency and memory usuage. We will test the approach on a number of real and synthetic datasets
and show the effectiveness of the proposed algorithm.

Keywords : Frequent pattern mining, Apriori algorithm, Uncertain dataset

Introduction
 Data mining of uncertain data has become an
active area of research recently. The data collected may
be certain or uncertain. But it is difficult to mine the
uncertain data which not in an proper form. In this
paper, we will study the problem of frequent pattern
mining with uncertain data and various Apriori based
algorithm which is suitable to mine the uncertain data,
which also may have some drawbacks when compare to
other algorithm. The problem of frequent pattern mining
with uncertain data has been studied up to some extent[1]
and variety of algorithm are examining the relative
behavior of various algorithm and extensions of well
known classes of deterministic algorithm.

One observation from our extensions to the
uncertain case is that the respective algorithms do not
show similar trends to the deterministic case. For
example, in the deterministic case, the FP-growth
algorithm is well known to be an extremely efficient
approach. However, in our tests, we found that the
extensions of the candidate generate and test as well as
the hyper structure based algorithms are much more
effective. Furthermore, many pruning methods, which
work well for the case of low uncertainty probabilities
and do not work very well for the case of high
uncertainty probabilities. This is because the extensions
of some of the algorithms to the uncertain case are
significantly more complex, and require different kinds
of trade-offs in the underlying computations.

The next section defines the significant of
association analysis. We will also discuss the various
frequent pattern mining algorithms to the uncertain
version. The remainder of the paper analyzed the

improvement given by the various frequent mining
algorithm when compare to one another.

Association Analysis

Association analysis is one of the most
significant data mining techniques. Market-basket
analysis is one of the fine example for Association
analysis where dataset consists of number of tuples and
attributes, each contains the items that a customer has
purchased in a transaction. To discover associations
among different items, the given dataset is analyzed. An
important step in the mining process is the extraction of
frequent item set, or set of items that co-occur in a major
fraction of the transactions. Besides market-basket
analysis, frequent item set mining is also a core
component in other variations of association analysis,
such as association-rule mining[6] and sequential-pattern
mining[7]. As an example, a crime dataset contains the
age of victims, weapons used and place of committing
crime and various other attributes. Applying association
analysis[9] on such dataset discover correlations and
shows the probability among the commitment of crimes
and the victims

[Usha, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3379-3384]

Table 2.1 Crime Dataset

Frequent Pattern

There are various existing algorithm to mine
frequent pattern from precise transaction database[16].
Each transaction may contain collection of items which
is stored in rows and columns (structured format). Each
of these items usually takes only one of the binary states.
The item is either present in, or absent from the
transaction. Numerous algorithm have been proposed to
mine frequent patterns from precise data and use the
mined patterns to form interesting association rules.

As we are living in an uncertain world, the data
may not be precise always. In some cases, the data may
be uncertain. This leads to the mining of frequent
patterns from uncertain dataset, in which users are not
sure about the presence of domain items in transactions
of the dataset. One way to express the uncertainty is to
associate each transaction item with an existential
probability value which indicates its likelihood of being
present in that transaction. In recent years, researchers
have proposed algorithms to mine frequent patterns from
uncertain data. Recently, Leung reviewed the most recent
developments in mining frequent patterns from uncertain
data. In the remainder of this paper, we will give a high-
level overview of some notable algorithms designed for
mining frequent patterns from precise data as well as for
uncertain data.
Apriori Algorithm

For learning association rules the classic
algorithm Apriori is a vital tool. The object of Apriori
algorithm is to identify association between different sets
of data, and to find out patterns in data. It is sometimes
referred to as Market Basket Analysis[14]. The Apriori
algorithm is an old algorithm for finding patterns in
data[10]. It is based on a really simple observation. For
example, if very few people go to Pizza hut and
McDonald's on the same day, then there can't be a lot of
people going to Starbucks, McDonald's, and Domino’s
on the same day. So, to find the combinations of three
stores that lots of people go to on the same day, you don't
have to look at combinations that include two stores that
very few people go to on the same day. This

tremendously reduces the number of combinations you
need to look at. As for where it is used best, in proves
the- concept of toy applications. It’s not particularly
efficient and in real-world applications, more efficient
algorithms such an Eclat are used. We knew that most
people who bought diapers also bought baby powder and
infant formula, but at the grocery store, very few people
who bought both diapers and baby powder also bought
infant formula. So, we know better which customers to
advertise it to. If someone buys A, B, but not C, and A,
B, and C associate, an ad or coupon for C has the best
chance of working.

“Bottom up” approach is used in Apriori, where
frequent subsets are extended one item at a time and
groups of candidates are tested against the data which is
known as candidate generation. When no further
successful extension are identified, the algorithm itself
terminates. Each set of data has a number of items and is
called a transaction. The output of Apriori is set of rules
that tell us how often items are contained in sets of data.
The following is the example: each line is a set of items
alpha beta gamma

alpha beta theta

alpha beta theta
1. 100% of sets with alpha also contain beta
2. 25% of sets with alpha, beta also have gamma
3. 50% of sets with alpha, beta also have theta

Apriori algorithm relies on generate and test
approach and an important property the Apriori property.
This property is also known as anti-monotone property,
and it is a basic pillar of the Apriori algorithm. It states
that all non-empty subsets of a frequent itemset must be
frequent. For example, if item set 1, 2, 3 is a frequent
item set[17], then all of its subsets 1, 2, 3, 1, 2, 2, 3 and
1, 3 must be frequent. In other words, if an item set is not
frequent, then none of its supersets can be frequent. As a
result, the list of potential frequent item set eventually
gets smaller as mining progresses.

In order to find frequent patterns[15], Apriori
makes first pass over the database to find the frequent 1-
itemsets. Once this pass is completed, the algorithm
generates candidate 2-itemsets based on these frequent 1-
itemsets. Then it scans the database to find frequent 2-
itemsets. In the next step, the Apriori algorithm
generates candidate 3-itemsets by using frequent 2-
itemsets.The algorithm then scans the database to find
frequent 3-itemsets from these candidates. This process
is repeated until no larger frequent item set are found.
The below mentioned diagram illustrates how Apriori
finds frequent patterns from a sample database.

[Usha, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3379-3384]

Fig. 3.1 Finding frequent patterns from sample
database

Apriori results good performance when dealing

with very sparse databases. Even it is one of the old
method data mining algorithm, it has a benefit of
achieving 100% accurate results. Unfortunately, when
databases get denser it degrades much faster, because the
algorithm scans database as many times as the longest
frequent pattern. Apriori generates candidate item sets of
length k from item sets of length k-1, as it uses breadth
first search and a Hash tree structure to count candidate
item sets potentially. After that it prunes the candidates
which have an infrequent sub pattern. The candidate set
contains all frequent k-length item sets as per the
downward closure lemma. And then, it scans the
transaction database to determine frequent item sets
among the candidates.

 For frequent item mining the Apriori employs
level wise search, i.e. breath first search, where it uses
frequent k item set to discover the (k+1) item set. To find
out the support count of each item, a scan of database is
performed while preprocessing the Apriori. In the final
stage all those items whose support count is less the
minimum support threshold, that is all infrequent 1 item
set are removed from the database. The aim of Apriori is
to find out frequent item set[18] from a transaction
dataset and derive association rules. Finding frequent
item set is not trifling because of its combinatorial
explosion. Once it is obtained, it can generate
association rules with confidence larger than or equal to
a user specified minimum confidence. Apriori is a
influential algorithm[13] for finding frequent item set
using candidate generation [18]. It is characterized as a
level-wise complete search algorithm using anti-
monotonocity of item set, “if an item set is not frequent,
any of its superset is never frequent”. Let us set the
frequent item set of size k be Fk and their candidates be
Ck. Apriori scans the database and searches for frequent
item set of size 1 by accumulating the count for each
item and collecting those that satisfy the minimum
support requirement. The following three steps iterate it
and extracts all the frequent item set.

1. Generate Ck+1, candidates of frequent item set of size k
+1, from the frequent item set of size k.
2. Scan the database and calculate the support of each
candidate of frequent item set.
3. Add those item set that satisfies the minimum support
requirement to Fk+1.

The function apriori generates Ck+1 from Fk in the
following two step process:
1. Join step:

Generate RK+1, the initial candidates of frequent item
set of size k + 1 by taking the union of the two frequent
item set of size k, Pk and Qk that have the first k-1
elements in common.
RK+1 = Pk ∪ Qk = {iteml, . ., itemk, itemk-1 , itemk-2}
Pk = {iteml , item2, . . . , itemk-1, itemk }
Qk = {iteml , item2, . . . , itemk-1, itemk-2}, where, iteml
< item2 < · · · < itemk < itemk-1.
2. Prune step:

Check if all the itemsets of size k in Rk+1 are
frequent and generate Ck+1 by removing those that do not
pass this requirement from Rk+1. This is because any
subset of size k of Ck+1 that is not frequent cannot be a
subset of a frequent itemset of size k + 1. Function subset
in line 5 finds all the candidates of the frequent itemsets
included in transaction t. Apriori, then, calculates
frequency only for those candidates generated this way
by scanning the database. It is evident that Apriori scans
the database at most kmax+1 times when the maximum
size of frequent itemsets is set at kmax. The Apriori
achieves good performance by reducing the size of
candidate sets. However, in situations with very many
frequent itemsets, large itemsets, or very low minimum
support, it still suffers from the cost of generating a huge
number of candidate sets and scanning the database
repeatedly to check a large set of candidate itemsets. In
fact, it is necessary to generate 2100 candidate itemsets
to obtain frequent itemsets of size 100.
FP Growth Algorithm

Han et al proposed a pattern growth approach to
avoid the problem of numerous database scans and
candidate generate –and-test process. The corresponding
algorithm is called FP Growth Algorithm. To obtain the
information about the database, it requires two scans
only. Frequent patterns are mined from the tree structure,
since contents of the database are captured in a tree
structure. Specifically, FP-growth starts by scanning the
database once to find all frequent 1-itemsets. Afterwards,
the algorithm makes a ranking table, in which items
appear in descending frequency order.

[Usha, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3379-3384]

Fig 3.2 Ranking Table

All infrequent items are then discarded. In the

second pass, the algorithm orders the items in each
transaction according to the ranking created in the first
pass. At the same time, infrequent items in the
transaction are ignored. Frequent items are inserted in a
tree structure called FP-tree by following the rank order.
Because of all the transactions follow the same order and
share the same prefix, they can be merged. FP growth
algorithm constructs a conditional FP-tree for each
frequent item so that all frequent patterns can be found
by just traversing the structure. It can also be applied to
small database. The above mentioned algorithm usually
our perform Apriori based variations in runtime. The
worst case scenario for FP-tree occurs when mining large
but very sparse database. Here, the tree becomes very
big. Array based structure can be used to reduce the
number of traversals of FP-tree so that it improves the
above mentioned case.

Uncertain Data

Data is known fact or information. Database is
a collection of related information. Data may also
uncertain[2] because of measurement inaccuracy,
sampling discrepancy, outdated data sources or other
errors. For example, in the scenario of moving objects, it
is impossible for the database to tract the exact locations
of all objects at all time instants. Hence, the location of
each object is associated with uncertainty between
updates. The different sources of uncertainty have to be
considered in order to produce accurate query and
mining results[5]. Uncertain data[3] may be in
Structured format or unstructured format.

Fig 4.1 Taxonomy of Uncertain Data mining

Structured Data

Structured data refers to data that is certain
because it is organized in a structure. The general form
of structured data is a database where specific
information is stored based on a methodology of columns
and rows, so called a table structure.

The term structured data also refers to data that
has a defined length and format for massive volume of
data. Numbers, dates and groups of words and numbers
called strings are the examples of structured data. It is
usually stored in a database. Normally structured data
refers to data kept in a “database” form rather than “free
form”. In view of technical sense, structured data is built
using information that is stored in fixed fields within a
record or file. These fields can be referenced by all
others since they are in an organized format. Structured
data is also searchable by data type within content.
Structured data is understood by computers and is also
efficiently organized for human readers. In contrast,
unstructured data has no identifiable structure. Examples
of structured data would be relational databases and
spreadsheets.
Unstructured Data

The term unstructured data refers to any data
that has no identifiable structure. For example, images,
videos, email, documents and text are all considered to
be unstructured data within a dataset. While each
individual document may contain its own specific
structure or formatting that based on the software
program used to create the data, unstructured data may
also be considered “loosely structured data” because the
data sources do have a structure but all data within a
dataset will not contain the same structure. In contrast,
unstructured data is information that is brought together
in a non-structured format, like a PDF document, or the
text in a chart note. It is considered "free form" and does
not follow any sort of organizational pattern. It is not
possible to read and interpret information that is free
form, since it does not built in an organized way.

[Usha, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3379-3384]

Frequent Pattern Mining From Uncertain Data
Direct Hash and Pruning Algorithm (DHP)

One of the potential problem of Apriori
algorithm is the huge number of candidate k-itemsets
generated and tested by the algorithm. To deal with the
potential problem faced by the Apriori algorithm, Direct
Hash and Pruning (DHP) algorithm was developed. The
DHP algorithm uses a hash table to prune away
infrequent candidate k-item set. At the beginning of each
level k, the DHP algorithm hashes each item set to a
bucket by using a hash function. Once all item set have
been hashed, the counter at each bucket is checked. If the
count is smaller than the minsup value, all candidates in
that bucket are discarded since they cannot be frequent.
As a result of having fewer candidates to check for, the
hashing technique speeds up the mining process and
reduces the number of candidates to be tested. The
performance of DHP depends on the size of the hash
table and of the number of infrequent item set being
hashed into the same bucket. For example, if several
distinct infrequent item set are being hashed into the
same bucket, the count of the bucket may exceed
minsup. Consequently, DHP cannot prune away these
(infrequent) item set, which can be considered as false
positives in the intermediate levels.
Perfect Hashing and Pruning Algorithm (PHP)

A variation of DHP is the Perfect Hashing and
Pruning (PHP) algorithm (Ozel & Guvenir, 2001), which
uses perfect hashing to avoid false positives in the
intermediate levels of the mining process. As a result,
each bucket shows the actual support of every itemset,
and thus saves some computation.
Matrix Apriori Algorithm

Matrix Apriori algorithm was proposed by
Pavon et al. to speed up the mining process. It reduces
the number of candidate item set by utilizing matrix and
vector structures.
Partition Algorithm

Many Apriori-based algorithms (including DHP
and PHP) require numerous database scans, which incur
high I/O costs, and thus slow down the mining process.
The Partition algorithm is another technique proposed to
improve Apriori-based algorithms by dividing the
database in a number of non-overlapping segments. After
the first database scan, item set that are frequent locally
in each segment can be found. For an item set to be
globally frequent in the database, it must be locally
frequent item set in at least one partition (or segment).
So, after gathering all local frequent item set, the
Partition algorithm scans the database for the second and
last time to check which of those local frequent item set
are actually frequent globally in the whole database. As
a result, this technique reduces drastically the number of
scans needed by Apriori-based algorithms to only two.

So, Partition algorithm always depends on the data
distribution and the number of segments.
U-Apriori Algorithm

A classic Apriori algorithm for uncertain
data[12] is called U-Apriori. The process is almost the
same as in the original algorithm, but now the expected
support of a given pattern is incremented by the product
of all existential probabilities of the items in the pattern.
Expecting the performance of U-Apriori to be even
worse than that of the original Apriori because of the
effect of multiplying small numbers several times. Chui
et al. proposed a trimming strategy to reduce the database
by removing items with low probability.
Decremental Pruning (DP) Algorithm

Decremental Pruning (DP) technique[11] was
developed in order to further improve the performance of
U-Apriori. DP scans the database once to estimate
bounds for each 1-itemset and stores this value in a
decremental counter for all patterns that contain this
item. As the database is scanned, this counter is updated
by subtracting the corresponding “over-estimate” for
each item in the pattern. If the counter gets below the
minimum support, any pattern containing that item
cannot be frequent and hence can be pruned. DP—with
its two improvements—is a very effective technique and
it improves both runtime and memory requirements of U-
Apriori. Even though it is still bounded by the generate-
and-test approach limitations, the application of the
decremental technique (known as UCP-Apriori
algorithm) is a reasonable Apriori-based adaptation for
uncertain data.
H-Mine Algorithm

H-Mine algorithm[18] was developed by Pei et
al, that uses dynamic linked list to maintain a hyperlink
array structure called H-struct. By using this structure,
the algorithm tries to improve the mining time. Once the
H-struct is constructed, the H-Mine algorithm[4] just
needs to maintain and update the numerous links that
point from one transaction to the next that contains the
same set of items. Since H-Mine keeps all transactions
that contain frequent items in memory, there is no need
to read the database more than once. From that point on,
all information is extracted from the H-struct. H-Mine
outperformed Apriori by finding frequent patterns
quicker and requiring less memory than FP-growth,
especially with small minimum support threshold.

Comparison

The analysis shows how uncertain data provides
different scenario and most algorithms give very
different performances than their counter parts with
precise data, U-Apriori inherits the problems of
generating-and-testing large number of candidates. UCP-
Apriori detects infrequent candidates, support the

[Usha, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3379-3384]

minimum value and improves the performance better
than U-Apriori. Even though UF-growth may suffer from
the problem of having very big trees as a result of many
different probability values for the same items, its
improvements truncate probability values and thus merge
more nodes. At the end, they decrease the chance of
having very big trees and the algorithm needs small
memory space. However, they require longer runtime
than U-Eclat. U-Eclat is the algorithm that requires less
memory to mine frequent patterns from uncertain data
when taking few database samples. However, the more
samples were taken by U-Eclat, it would take long time
to finish.=

The UF-Growth algorithm modifies the FP-
Growth algorithm by the way of building the
transaction tree. FP-Growth uses the FP-Tree, a tree-
based data structure, to store a compact representation of
the transaction database that contains information about
all frequent items. To overcome the drawback of FP-
Tree which does not store existential probabilities,
associated with items, UF-Tree is proposed. Each node
stores an item, its expected support, as well as the
number of occurrence for each item. To merge the
transaction with the child node in UF-Tree, UF-Growth
requires both the item and its corresponding existential
probability to match. Hence UF-Tree algorithm have
lower compression ratio then FP-Tree. The UH-Struct
structure uses the linkage behaviour among transactions
corresponding to a branch of the FP-Tree(UF-Tree)
without actually creating a projected database. This
approach is better than FP-Tree even in the deterministic
case, when compression from FP-Tree is not high. This
turns out to be particularly true for the uncertain case, as
discussed earlier. H-struct also stores the probability of
each item besides the link and the item itself.

UFIMT (Uncertain Frequent Itemset Mining)
contains three representative algorithms: UApriori [1],
UFP-growth [1], and UH-Mine [1]. UApriori is the first
expected support-based frequent item set mining
algorithm which extends the well-known Apriori
algorithm to the uncertain environment and employs the
generate-and-test framework to find all expected support-
based frequent item set. UFP-growth algorithm extends
the well-known FP-growth algorithm. Similar to the
traditional FPgrowth algorithm, UFP-growth algorithm
also builds an index tree, called UFP-tree to store all
information of the uncertain database. Then, based on the
UFP-tree, the algorithm recursively builds conditional
sub-trees and expected support-based frequent item set.
UH-Mine is also based on the divide-and-conquer
framework. The algorithm is extended from the H-Mine
algorithm which is a classical algorithm in deterministic
frequent itemset mining. Similar to H-Mine, UH-
Mine[19] first builds the special data structure, UH-

Struct, and then recursively discovers the expected
support-based frequent itemsets based on the DFS
strategy. Many of the pattern finding algorithms such as
decision tree, classification rules and clustering
techniques that are frequently used in data mining have
been developed in machine learning research
community.

Conclusion

In this paper, we analyzed the most well known
algorithms to find frequent patterns from uncertain data.
We also explained clearly about uncertain data that
consist of both structured and unstructured data. The
traditional Apriori algorithm is the referent algorithm for
generating frequent pattern candidates and checking the
database to keep those that are indeed frequent. We also
compare various Apriori based algorithm and conclude
that each of the algorithms that we have described in this
paper possesses very different features, and the
performance of each depends heavily on the
characteristics of the dataset. We sure that researches and
data miners can utilize this paper at their level best.

References

[1] Charu C. Aggarwal, et al. (2009), “ Frequent
pattern mining with uncertain data”,
International Conference on Knowledge
Discovery and Data Mining, Paris, June 2010,
pp.29-38.

[2] Ming Hua, Jian Pei (2008), “Mining
uncertain and probabilistic data: problems,
challenges,methods, and applications”,
International Conference on Knowledge
Discovery and Data mining”, Las Vegas,
September 2008.

[3] Carson Kai-Sang Leung, Christopher Lee
Carmichael, and Boyu Hao (2007), “Efficient
mining of frequent patterns from uncertain
data”, International Conference on Data Mining
Workshops”, USA, October 2007, pp.489-494.

[4] Jian Pei et al. (2001), “H-Mine: Hyper-
structure mining of frequent patterns in large
databases”, International Conference on Data
Mining, California, USA, November 2001,
pp.441-448.

[5] Calin Garboni, Toon Calders and Bart
Goethals (2010), “Efficient pattern mining from
uncertain data with sampling”, Pacific-Asia
Conference on Knowledge Discovery and Data
Mining, Hyderabad, June 2010, pp.480-487.

[6] Agrawal, R. and Srikant, R. (1994), “Fast
algorithms for mining association rules in large
databases”, International Conference on Very

[Usha, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3379-3384]

Large Data Bases (VLDB), Santiago de Chile,
Chile, pp.487-499.

[7] Agrawal, R. and Srikant, R. (1995), “Mining
Sequential Patterns”, International Conference
on Data Engineering (ICDE), Taipei, Taiwan,
pp.3-14.

[8] Agrawal, R., Imielinsky, T., and Swami, A.
(1993), “Database mining: a performance
perspective”, IEEE Transactions on Knowledge
and Data Engineering , pp.914–925.

[9] Cheng, H., and Han, J. (2009), “Frequent
itemsets and association rules in Encyclopedia
of Database Systems”, Springer, pp.1184-1187.

[10] Cheng, J., Ke, Y., and Ng, W. (2007), “A
survey on algorithms for mining frequent
itemsets”, Knowledge and Information Systems
, pp.1–27.

[11] Chui, C.K., and Kao, B. (2008), “A
decremental approach for mining frequent
itemsets from uncertain data”, 12th Pacific-Asia
Conference on Knowledge Discovery and Data
Mining (PAKDD), Osaka, Japan, pp.64-75.

[12] Chui, C.K., Kao, B., and Hung, E. (2007),
“Mining frequent itemsets from uncertain
data”. 11th Pacific-Asia Conference on
Knowledge Discovery and Data Mining
(PAKDD), Nanjing, China, pp.47–58.

[13] O. Maimon, and L. Rokach, “Data Mining
and Knowledge Discovery Handbook”, 2nd ed.,
pp. 321-338. Springer.

[14] Han, J., & Kamber, M. (2011), “Data Mining,
Concepts and Techniques”, 3rd ed.

[15] Han, J., Cheng, H., Xin, D., & Yan, X.
(2007), “Frequent pattern mining: current status
and future directions”, pp.55–86.

[16] Juan J. Cameron, Carson K. Leung, “Mining
Frequent Patterns From Precise And Uncertain
Data”, Canada.

[17] Yongxin Tong, Lei Chen, Philip S. Yu,
“UFIMT: An Uncertain Frequent Itemset
Mining Toolbox”, USA.

[18] Jian Pei et al. (2007), “H-Mine: Hyper-
Structure Mining of Frequent Patterns in Large
Databases”, Hong Kong, pp. 39, 593–605.

[19] Jian Pei et al. (2007), “H-Mine: Fast and
space-preserving frequent pattern mining in
large databases”, Hong Kong.

