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Abstract 
  The mining of frequent item set from uncertain data is the great task and it consumes more time.  One of 
the frequent pattern mining algorithm called Apriori algorithm can be used to mine the data from bulk of uncertain 
dataset. But it can give only minimum support constraint in mining the large amount of uncertain dataset.  The 
experimental behavior of different types of algorithms is very different in the uncertain case as compared to the 
deterministic case.    In particular when compare to Apriori algorithm and other Apriori based algorithm, each and 
every algorithm has their own advantages when compare to other algorithm. Some algorithm shows robustness with 
respect of both efficiency and memory usuage.  We will test the approach on a number of real and synthetic datasets 
and show the effectiveness of the proposed algorithm.  
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Introduction
 Data mining of uncertain data has become an 
active area of research recently.  The data collected may 
be certain or uncertain. But it is difficult to mine the 
uncertain data which not in an proper form.  In this 
paper, we will study the problem of frequent pattern 
mining with uncertain data and various Apriori based 
algorithm which is suitable to mine the uncertain data, 
which also may have some drawbacks when compare to 
other algorithm.  The problem of frequent pattern mining 
with uncertain data has been studied up to some extent[1] 
and variety of algorithm are examining the relative 
behavior of various algorithm and extensions of well 
known classes of deterministic algorithm. 

One observation from our extensions to the 
uncertain case is that the respective algorithms do not 
show similar trends to the deterministic case.  For 
example, in the deterministic case, the FP-growth 
algorithm is well known to be an extremely efficient 
approach.  However, in our tests, we found that the 
extensions of the candidate generate and test as well as 
the hyper structure based algorithms are much more 
effective.  Furthermore, many pruning methods, which 
work well for the case of low uncertainty probabilities 
and do not work very well for the case of high 
uncertainty probabilities.  This is because the extensions 
of some of the algorithms to the uncertain case are 
significantly more complex, and require different kinds 
of trade-offs in the underlying computations. 

The next section defines the significant of 
association analysis. We will also discuss the various 
frequent pattern mining  algorithms to the uncertain 
version. The remainder of the paper analyzed the 

improvement given by the various frequent mining 
algorithm when compare to one another. 
 
Association Analysis 

Association analysis is one of the most 
significant data mining techniques.  Market-basket 
analysis is one of the fine example for Association 
analysis where dataset consists of number of tuples and 
attributes, each contains the items that a customer has 
purchased in a transaction.  To discover associations 
among different items, the given dataset is analyzed.  An 
important step in the mining process is the extraction of 
frequent item set, or set of items that co-occur in a major 
fraction of the transactions. Besides market-basket 
analysis, frequent item set mining is also a core 
component in other variations of association analysis, 
such as association-rule mining[6] and sequential-pattern 
mining[7]. As an example, a crime dataset contains the 
age of victims, weapons used and place of committing 
crime and various other attributes.  Applying association 
analysis[9] on such dataset discover correlations and 
shows the probability among the commitment of crimes 
and the victims 



[Usha, 2(12): December, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3379-3384] 

 

 
Table 2.1  Crime Dataset 

 
Frequent Pattern 

There are various existing algorithm to mine 
frequent pattern from precise transaction database[16].  
Each transaction may contain collection of items which 
is stored in rows and columns (structured format).  Each 
of these items usually takes only one of the binary states.  
The item is either present in, or absent from the 
transaction.  Numerous algorithm have been proposed to 
mine frequent patterns from precise data and use the 
mined patterns to form interesting association rules.    

As we are living in an uncertain world, the data 
may not be precise always.  In some cases, the data may 
be uncertain.  This leads to the mining of frequent 
patterns from uncertain dataset, in which users are not 
sure about the presence of domain items in transactions 
of the dataset. One way to express the uncertainty is to 
associate each transaction item with an existential 
probability value which indicates its likelihood of being 
present in that transaction. In recent years, researchers 
have proposed algorithms to mine frequent patterns from 
uncertain data. Recently, Leung reviewed the most recent 
developments in mining frequent patterns from uncertain 
data. In the remainder of this paper, we will give a high-
level overview of some notable algorithms designed for 
mining frequent patterns from precise data as well as for 
uncertain data. 
Apriori Algorithm  

For learning association rules the classic 
algorithm Apriori is a vital tool. The object of Apriori 
algorithm is to identify association between different sets 
of data, and to find out patterns in data.  It is sometimes 
referred to as Market Basket Analysis[14]. The Apriori 
algorithm is an old algorithm for finding patterns in 
data[10]. It is based on a really simple observation. For 
example,  if very few people go to Pizza hut and 
McDonald's on the same day, then there can't be a lot of 
people going to Starbucks, McDonald's, and Domino’s 
on the same day. So, to find the combinations of three 
stores that lots of people go to on the same day, you don't 
have to look at combinations that include two stores that 
very few people go to on the same day. This 

tremendously reduces the number of combinations you 
need to look at. As for where it is used best, in proves 
the- concept of toy applications.  It’s not particularly 
efficient and in real-world applications, more efficient 
algorithms such an Eclat are used. We knew that most 
people who bought diapers also bought baby powder and 
infant formula, but at the grocery store, very few people 
who bought both diapers and baby powder also bought 
infant formula. So, we  know better which customers to 
advertise it to. If someone buys A, B, but not C, and A, 
B, and C associate, an ad or coupon for C has the best 
chance of working. 

“Bottom up” approach is used in Apriori, where 
frequent subsets are extended one item at a time and 
groups of candidates are tested against the data which is 
known as candidate generation. When no further 
successful extension are identified, the algorithm itself 
terminates.  Each set of data has a number of items and is 
called a transaction.  The output of Apriori is set of rules 
that tell us how often items are contained in sets of data.  
The following is the example: each line is a set of items 
alpha beta gamma 

alpha beta theta 

alpha beta theta 
1. 100% of sets with alpha also contain beta 
2. 25% of sets with alpha, beta also have gamma 
3. 50% of sets with alpha, beta also have theta 

Apriori algorithm  relies on generate and test 
approach and an important property the Apriori property.  
This property is also known as anti-monotone property, 
and it is a basic pillar of the Apriori algorithm. It states 
that all non-empty subsets of a frequent itemset must be 
frequent. For example, if item set 1, 2, 3  is a frequent 
item set[17], then all of its subsets  1, 2, 3, 1, 2, 2, 3 and 
1, 3 must be frequent. In other words, if an item set is not 
frequent, then none of its supersets can be frequent. As a 
result, the list of potential frequent item set eventually 
gets smaller as mining progresses. 

In order to find frequent patterns[15], Apriori 
makes first pass over the database to find the frequent 1-
itemsets.  Once this pass is completed, the algorithm 
generates candidate 2-itemsets based on these frequent 1-
itemsets.  Then it scans the database to find frequent 2-
itemsets.  In the next step, the Apriori algorithm 
generates candidate 3-itemsets by using frequent 2-
itemsets.The algorithm then scans the database to find 
frequent 3-itemsets from these candidates.  This process 
is repeated until no larger frequent item set are found. 
The below mentioned diagram  illustrates how Apriori 
finds frequent patterns from a sample database.  
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Fig. 3.1 Finding frequent patterns from sample 
database 

 
Apriori results good performance when dealing 

with very sparse databases.  Even it is one of the old 
method data mining algorithm, it has a benefit of 
achieving 100% accurate results.  Unfortunately, when 
databases get denser it degrades much faster, because the 
algorithm scans database as many times as the longest 
frequent pattern. Apriori generates candidate item sets of 
length k from item sets of length k-1, as it uses breadth 
first search and a Hash tree structure to count candidate 
item sets potentially. After that it prunes the candidates 
which have an infrequent sub pattern. The candidate set 
contains all frequent k-length item sets as per the 
downward closure lemma.  And then, it scans the 
transaction database to determine frequent item sets 
among the candidates. 

 For frequent item mining the Apriori employs 
level wise search, i.e. breath first search, where it uses 
frequent k item set to discover the (k+1) item set. To find 
out the support count of each item, a scan of database is 
performed while preprocessing the Apriori. In the final 
stage all those items whose support count is less the 
minimum support threshold, that is all infrequent 1 item 
set are removed from the database.  The aim of Apriori is 
to find out frequent item set[18] from a transaction 
dataset and derive association rules.  Finding frequent 
item set is not trifling because of its combinatorial 
explosion.  Once it is obtained, it can generate 
association rules with confidence larger than or equal to 
a user specified minimum confidence. Apriori is a 
influential algorithm[13] for finding frequent item set 
using candidate generation [18]. It is characterized as a 
level-wise complete search algorithm using anti-
monotonocity of item set, “if an item set is not frequent, 
any of its superset is never frequent”.   Let us set the 
frequent item set of size k be Fk and their candidates be 
Ck.  Apriori scans the database and searches for frequent 
item set of size 1 by accumulating the count for each 
item and collecting those that satisfy the minimum 
support requirement.  The following three steps iterate it 
and extracts all the frequent item set. 

  
1. Generate Ck+1, candidates of frequent item set of size k 
+1, from the frequent item set of size k. 
2. Scan the database and calculate the support of each 
candidate of frequent item set. 
3. Add those item set that satisfies the minimum support 
requirement to Fk+1. 
 
The function apriori generates Ck+1 from Fk in the 
following two step process: 
1. Join step:   

Generate RK+1, the initial candidates of frequent item 
set of size k + 1 by taking the union of the two frequent 
item set of size k, Pk and Qk  that have the first k-1 
elements in  common. 
RK+1 = Pk ∪ Qk = {iteml, . ., itemk, itemk-1 , itemk-2} 
Pk = {iteml , item2, . . . , itemk-1, itemk } 
Qk = {iteml , item2, . . . , itemk-1, itemk-2}, where, iteml 
< item2 < · · · < itemk < itemk-1. 
2. Prune step:  

Check if all the itemsets of size k in Rk+1 are 
frequent and generate Ck+1 by removing those that do not 
pass this requirement from Rk+1. This is because any 
subset of size k of Ck+1 that is not frequent cannot be a 
subset of a frequent itemset of size k + 1. Function subset 
in line 5 finds all the candidates of the frequent itemsets 
included in transaction t. Apriori, then, calculates 
frequency only for those candidates generated this way 
by scanning the database. It is evident that Apriori scans 
the database at most kmax+1 times when the maximum 
size of frequent itemsets is set at kmax. The Apriori 
achieves good performance by reducing the size of 
candidate sets. However, in situations with very many 
frequent itemsets, large itemsets, or very low minimum 
support, it still suffers from the cost of generating a huge 
number of  candidate sets and scanning the database 
repeatedly to check a large set of candidate itemsets. In 
fact, it is necessary to generate 2100 candidate itemsets 
to obtain frequent itemsets of size 100. 
FP Growth Algorithm  

Han et al proposed a pattern growth approach to 
avoid the problem of numerous database scans and 
candidate generate –and-test process. The corresponding 
algorithm is called FP Growth Algorithm.  To obtain the 
information about the database, it requires two scans 
only. Frequent patterns are mined from the tree structure, 
since contents of the database are captured in a tree 
structure. Specifically, FP-growth starts by scanning the 
database once to find all frequent 1-itemsets. Afterwards, 
the algorithm makes a ranking table, in which items 
appear in descending frequency order. 
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Fig 3.2  Ranking Table 

 
All infrequent items are then discarded.  In the 

second pass, the algorithm orders the items in each 
transaction according to the ranking created in the first 
pass.  At the same time, infrequent items in the 
transaction are ignored.  Frequent items are inserted in a 
tree structure called FP-tree by following the rank order.  
Because of all the transactions follow the same order and 
share the same prefix, they can be merged. FP growth 
algorithm constructs a conditional FP-tree for each 
frequent item so that all frequent patterns can be found 
by just traversing the structure.  It can also be applied to 
small database. The above mentioned algorithm usually 
our perform Apriori based variations in runtime.  The 
worst case scenario for FP-tree occurs when mining large 
but very sparse database.  Here, the tree becomes very 
big.  Array based structure can be used to reduce the 
number of traversals of FP-tree so that it improves the 
above mentioned case. 

 
Uncertain Data 

Data is known fact or information.  Database is 
a collection of related information. Data may also 
uncertain[2] because of measurement inaccuracy, 
sampling discrepancy, outdated data sources or other 
errors.  For example, in the scenario of moving objects, it 
is impossible for the database to tract the exact locations 
of all objects at all time instants.  Hence, the location of 
each object is associated with uncertainty between 
updates.  The different sources of uncertainty have to be 
considered in order to produce accurate query and 
mining results[5].  Uncertain data[3] may be in 
Structured format or unstructured format. 
 
 

 
Fig 4.1  Taxonomy of Uncertain Data mining 

 
Structured Data 

Structured data refers to data that is certain 
because it is organized in a structure.  The general form 
of  structured data is a database where specific 
information is stored based on a methodology of columns 
and rows, so called a table structure. 

The term structured data also refers to data that 
has a defined length and format for massive volume of 
data.  Numbers, dates and groups of words and numbers 
called strings are the examples of structured data.  It is 
usually stored in a database.  Normally structured data 
refers to data kept in a “database” form rather than “free 
form”. In view of technical sense, structured data is built 
using information that is stored in fixed fields within a 
record or file.  These fields can be referenced by all 
others since they are in an organized format. Structured 
data is also searchable by data type within content. 
Structured data is understood by computers and is also 
efficiently organized for human readers.  In contrast, 
unstructured data has no identifiable structure. Examples 
of structured data would be relational databases and 
spreadsheets. 
Unstructured Data 

The term unstructured data refers to any data 
that has no identifiable structure. For example, images, 
videos, email, documents and text are all considered to 
be unstructured data within a dataset. While each 
individual document may contain its own specific 
structure or formatting that based on the software 
program used to create the data, unstructured data may 
also be considered “loosely structured data” because the 
data sources do have a structure but all data within a 
dataset will not contain the same structure. In contrast, 
unstructured data is information that is brought together 
in a non-structured format, like a PDF document, or the 
text in a chart note.  It is considered "free form" and does 
not follow any sort of organizational pattern. It is not 
possible to read and interpret information that is free 
form, since it does not built in an organized way.   
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Frequent Pattern Mining From Uncertain Data 
Direct Hash and Pruning Algorithm (DHP) 

One of the potential problem of Apriori 
algorithm is the huge number of candidate k-itemsets 
generated and tested by the algorithm.  To deal with the 
potential problem faced by the Apriori algorithm, Direct 
Hash and Pruning (DHP) algorithm was developed. The 
DHP algorithm uses a hash table to prune away 
infrequent candidate k-item set. At the beginning of each 
level k, the DHP algorithm hashes each item set to a 
bucket by using a hash function. Once all item set have 
been hashed, the counter at each bucket is checked. If the 
count is smaller than the minsup value, all candidates in 
that bucket are discarded since they cannot be frequent. 
As a result of having fewer candidates to check for, the 
hashing technique speeds up the mining process and 
reduces the number of candidates to be tested. The 
performance of DHP depends on the size of the hash 
table and of the number of infrequent item set being 
hashed into the same bucket. For example, if several 
distinct infrequent item set are being hashed into the 
same bucket, the count of the bucket may exceed 
minsup. Consequently, DHP cannot prune away these 
(infrequent) item set, which can be considered as false 
positives in the intermediate levels. 
Perfect Hashing and Pruning Algorithm (PHP) 

A variation of DHP is the Perfect Hashing and 
Pruning (PHP) algorithm (Ozel & Guvenir, 2001), which 
uses perfect hashing to avoid false positives in the 
intermediate levels of the mining process. As a result, 
each bucket shows the actual support of every itemset, 
and thus saves some computation.  
Matrix Apriori Algorithm 

Matrix Apriori algorithm was proposed by 
Pavon et al. to speed up the mining process. It reduces 
the number of candidate item set by utilizing matrix and 
vector structures. 
Partition Algorithm 

Many Apriori-based algorithms (including DHP 
and PHP) require numerous database scans, which incur 
high I/O costs, and thus slow down the mining process. 
The Partition algorithm is another technique proposed to 
improve Apriori-based algorithms by dividing the 
database in a number of non-overlapping segments. After 
the first database scan, item set that are frequent locally 
in each segment can be found. For an item set to be 
globally frequent in the database, it must be locally 
frequent item set in at least one partition (or segment). 
So, after gathering all local frequent item set, the 
Partition algorithm scans the database for the second and 
last time to check which of those local frequent item set 
are actually frequent  globally in the whole database. As 
a result, this technique reduces drastically the number of 
scans needed by Apriori-based algorithms to only two. 

So, Partition algorithm always depends on the data 
distribution and the number of segments. 
U-Apriori Algorithm 

A classic Apriori algorithm for uncertain 
data[12] is called U-Apriori. The process is almost the 
same as in the original algorithm, but now the expected 
support of a given pattern is incremented by the product 
of all existential probabilities of the items in the pattern. 
Expecting the performance of U-Apriori to be even 
worse than that of the original Apriori because of the 
effect of multiplying small numbers several times. Chui 
et al. proposed a trimming strategy to reduce the database 
by removing items with low probability.  
Decremental Pruning (DP) Algorithm 

Decremental Pruning (DP) technique[11] was 
developed in order to further improve the performance of  
U-Apriori. DP scans the database once to estimate 
bounds for each 1-itemset and stores this value in a 
decremental counter for all patterns that contain this 
item. As the database is scanned, this counter is updated 
by subtracting the corresponding “over-estimate” for 
each item in the pattern. If the counter gets below the 
minimum support, any pattern containing that item 
cannot be frequent and hence can be pruned. DP—with 
its two improvements—is a very effective technique and 
it improves both runtime and memory requirements of U-
Apriori. Even though it is still bounded by the generate-
and-test approach limitations, the application of the 
decremental technique (known as UCP-Apriori 
algorithm) is a reasonable Apriori-based adaptation for 
uncertain data. 
H-Mine Algorithm 

H-Mine algorithm[18] was developed by Pei et 
al, that uses dynamic linked list to maintain a hyperlink 
array structure called H-struct.  By using this structure, 
the algorithm tries to improve the mining time.  Once the 
H-struct is constructed, the H-Mine algorithm[4] just 
needs to maintain and update the numerous links that 
point from one transaction to the next that contains the 
same set of items. Since H-Mine keeps all transactions 
that contain frequent items in memory, there is no need 
to read the database more than once. From that point on, 
all information is extracted from the H-struct. H-Mine 
outperformed Apriori by finding frequent patterns 
quicker and requiring less memory than FP-growth, 
especially with small minimum support threshold.   
 
Comparison  

The analysis shows how uncertain data provides 
different scenario and  most algorithms give very 
different performances than their counter parts with 
precise data, U-Apriori inherits the problems of 
generating-and-testing large number of candidates. UCP-
Apriori detects infrequent candidates, support the 
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minimum value and improves the performance better 
than U-Apriori. Even though UF-growth may suffer from 
the problem of having very big trees as a result of many 
different probability values for the same items, its 
improvements truncate probability values and thus merge 
more nodes.  At the end, they decrease the chance of 
having very big trees and the algorithm needs small 
memory space.  However, they require longer runtime 
than U-Eclat.  U-Eclat is the algorithm that requires less 
memory to mine frequent patterns from uncertain data 
when taking few database samples.  However, the more 
samples were taken by U-Eclat, it would take long time 
to finish.= 

The UF-Growth  algorithm modifies the FP-
Growth  algorithm  by the way of building the 
transaction tree.  FP-Growth uses the FP-Tree, a tree-
based data structure, to store a compact representation of 
the transaction database that contains information about 
all frequent items.  To overcome the drawback of FP-
Tree which does not store existential probabilities, 
associated with items, UF-Tree is proposed.   Each node 
stores an item, its expected support, as well as the 
number of occurrence for each item. To merge the 
transaction with the child node in UF-Tree, UF-Growth 
requires both the item and its corresponding existential 
probability to match.  Hence UF-Tree algorithm have 
lower compression ratio then FP-Tree.  The UH-Struct 
structure uses the linkage behaviour among transactions 
corresponding to a branch of the FP-Tree(UF-Tree) 
without actually creating a projected database. This 
approach is better than FP-Tree even in the deterministic 
case, when compression from FP-Tree is not high. This 
turns out to be particularly true for the uncertain case, as 
discussed earlier. H-struct also stores the probability of 
each item besides the link and the item itself. 

UFIMT (Uncertain Frequent Itemset Mining) 
contains three representative algorithms: UApriori [1], 
UFP-growth [1], and UH-Mine [1]. UApriori is the  first 
expected support-based frequent item set mining 
algorithm which extends the well-known Apriori 
algorithm to the uncertain environment and employs the 
generate-and-test framework to find all expected support-
based frequent item set. UFP-growth algorithm extends 
the well-known FP-growth algorithm. Similar to the 
traditional FPgrowth algorithm, UFP-growth algorithm 
also  builds an index tree, called UFP-tree to store all 
information of the uncertain database. Then, based on the 
UFP-tree, the algorithm recursively builds conditional 
sub-trees and expected support-based frequent item set.  
UH-Mine is also based on the divide-and-conquer 
framework. The algorithm is extended from the H-Mine 
algorithm which is a classical algorithm in deterministic 
frequent itemset mining. Similar to H-Mine, UH-
Mine[19]  first builds the special data structure, UH-

Struct, and then recursively discovers the expected 
support-based frequent itemsets based on the DFS 
strategy. Many of the pattern finding algorithms such as 
decision tree, classification rules and clustering 
techniques that are frequently used in data mining have 
been developed in machine learning research 
community.  
 
Conclusion 

In this paper, we analyzed the most well known 
algorithms to find frequent patterns from uncertain data.  
We also explained clearly about uncertain data that 
consist of both structured and unstructured data.  The 
traditional Apriori algorithm is the referent algorithm for 
generating frequent pattern candidates and checking the 
database to keep those that are indeed frequent. We also 
compare various Apriori based algorithm and conclude 
that each of the algorithms that we have described in this 
paper possesses very different features, and the 
performance of each depends heavily on the 
characteristics of the dataset. We sure that researches and 
data miners can utilize this paper at their level best. 
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